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Summary. Because directional selection exhausts addi- 
tive-genetic variance, it is frequently claimed that the 
heritability of fitness should be very close to zero. How- 
ever, mutation-selection balance generates a certain 
amount  of additive-genetic variance, so that even parent- 
offspring measures of heritability may be greater than 
zero at equilibrium. Intra-generation heritability may 
also be non-zero, providing the potentials for genetic 
change following environmental change. 
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Introduction 

The purpose of this note is to review the possibility that 
equilibrial additive-genetic variance in fitness need not be 
zero, whether estimated from parent-offspring correla- 
tion or regression or within generation correlation. 

In 1930, Fisher enunciated what he called the funda- 
mental thorem of natural selection: "The rate of increase 
in fitness of any organism at any time is equal to its 
genetic variance in fitness at that time." What Fisher 
called the genetic variance is now generally termed the 
additive-genetic variance. As Fisher noted, this theorem 
has the implication that "there will be no additive-genetic 
variance in fitness in random mating populations at equi- 
librium under natural selection, independent of the mode 
of selection, so that individuals of different genotype will 
all produce progeny with the same average fitness" 
(Charlesworth 1987). As has frequently been noted, the 
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theorem is not in fact, as Fisher had initially hoped, a 
biological analogue of the second law of thermodynam- 
ics, in that it does not have that law's generality. How- 
ever, it is usually accepted that it applies in a qualitative 
way. 

As noted by Haldane (1949), if all possible matings in 
a population produce offspring with the same mean fit- 
ness, there will be no parent-offspring correlation (or re- 
gression) in fitness and, consequently, no change in fitness 
over time; this is, of course, the equilibrium to which 
Charlesworth referred. Thus, it has frequently been 
claimed that traits closely related to fitness should have 
low heritability as compared with traits not  directly relat- 
ed to fitness (e.g., Falconer 1981). Of course, the question 
then should be asked, which traits fall into each category ? 
For  example, in conditions of crowding and seasonal 
uncertainty, the ability of grasses to produce multiple 
tillers or flowering stems, rather than just a main stem 
and culm, may be highly advantageous, yet not in more 
favorable environments. For  one grass, common wheat, 
heritability of tillering ability has been estimated in a 
variety of studies to be between 0.03 and 0.80 (Merrit 
1988). It is not clear what inference regarding the relation 
of tillering to fitness may be drawn. 

The inference discussed above about "fitness traits" 
related essentially to parent-offspring heritability. Within 
a generation, as again noted by Haldane (1949), the situ- 
ation is rather different; this will be considered further 
below. More recently, Eshel and Hamilton (1984) have 
noted that if there are cyclical variations in the environ- 
ment such that fitnesses are not constant but also vary 
cyclically, parent-offspring correlations will not be zero 
and natural selection will occur at a rate given by the 
additive variance in fitness. In this paper, we wish to 
consider both parent-offspring correlations in fitness and 
sib-sib correlations in fitness, in order to access the gener- 
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ality of the conclusion that equilibrial heritability of fit- 
ness should be close to zero and that, in any given gener- 
ation, the opportunity for natural selection on traits 
related to fitness will be low, apart from stabilizing or 
"purifying" selection. We shall show that the more impor- 
tant question is whether the fitnesses, even if constant, are 
unassociated between family members from generation 
to generation. 

Mousseau and Roff (1987) present substantial evi- 
dence for the existence in natural populations of high 
heritabilities for traits under strong selection, in contrast 
to the expectation of Charlesworth (1987). 

We only consider random mating populations; assor- 
tative mating may complicate both estimation and inter- 
pretation of parent-offspring regression (Fisher 1918; 
Gimelfarb 1985). 

Parent-offspring correlations 

For a balanced polymorphism at equilibrium, as shown 
by Haldane (1949), the parent-offspring correlation in 
fitness is zero. However, as noted by Eshel and Hamilton 
(1984), away from equilibrium, this correlation will in 
general be non-zero, and in most cases will be positive, 
though it can be negative. The table below shows the 
frequencies of different parent-offspring combinations. 
Taking 0 _< ~, fl, 7 -< 1 as arbitrary fitnesses, the subscripts 
t, t + 1 denoting successive generations, we can write out 
the covariance as follows: 

COVop = [(/~,- ~,) eq+G-~,) Rp] [ (~ ,+ , -  ~,+1) P 

+ (7,+, -/7,+ ~) q]. 

Although this expression is much simpler than that of 
Eshel and Hamilton (1984), theirs can be obtained by 
some (tricky) calculations if one sets c~ = 1 + cd, fl = 1 + ill, 
7 = 1 - ez. (Subscripts are omitted and ~1, fl~ denote their 
~,/~.) 

Then COVop > 0 if both of the expressions in square 
brackets are greater than zero or if both are less than 
zero. From this expression for the covariance, we note 
that if 7 > fl > ~ in both parent and offspring generations 
or 7 -</7 -< e in both generations, COVop > 0. We also note 
that if fitnesses do not vary between generations and 
there is random mating, then COVop=pq[(fi-~)p+ 
(7-f i )  q]2 >0.  [This is Eq. (1.7) of Ewens (1979).] Further, 
if the rank order of fitnesses is reversed between genera- 
tions, COVop < 0, as noted by Eshel and Hamilton (1984). 
However, this is a very strong condition to impose on the 
fitness values. (It is sufficient, but not necessary. If fl > c~, 

or fi < c~, 7, COVop < 0 is possible for certain P, Q, R, 

P, q.) 
We can also obtain the parent-offspring regression 

coefficient, bop, from COVop and V a r p = ( f i - e ) z P +  
(7 - 8) 2 R -  [ ( f l -  ~) P -  ( 7 -  fi) R] 2 for the case of constant 

fitnesses. The parent-offspring correlation may be simi- 
larly derived. 

Many special cases of (mostly constant) fitness values 
have been considered in the literature. Table I shows 
several of these, using standard notation (/~ = mutation 
rate per gene per generation, 0_< s, t_< 1 = diminutions in 
fitness, 0_<h_< 1 = scale factor for dominance). Our rea- 
sons for presenting so many examples, which may all be 
simply derived from the covariance expression given 
above and the marginal variance, are twofold. First, the 
magnitudes may be relatively very different. Secondly, we 
wished to collect for comparison the various cases pre- 
sented in the literature for parent-offspring and sib-sib 
correlations (Table 4). The model of one-sided frequency 
dependence is very crude, but there is evidence that the 
phenomenon is real (Knoppien 1985), so we have used 
the simplest possible model for illustrative purposes (cf. 
Haldane and Jayakar 1967; Zonta  and Jayakar 1988). In 
addition, it should be noted that a non-zero parent-off- 
spring correlation is expected in the case of a sex-linked 
balanced polymorphism (Leach and Mayo 1967). Table 1 
shows clearly that the use of the regression coefficient 
(which agrees with the O-P correlation in these cases) 
may lead to artificial results, since it is the quotient of two 
quantities both of which may be very small. In fact, if one 
calculates bop analytically as bop = COVop/Var P then the 
nominator and the denominator contain the same multi- 
plicative term pq, which cancels, but is almost zero at 
mutation-selection equilibrium and is zero at the pure 
selection equilibrium. Therefore, in some cases of Table 1 
we have bop ~ 1/2, whereas COVop and hence the additive 
genetic variance is very small. The same problem seems 
to occur in the paper of Eshel and Hamilton (1984), who 
showed that under cyclical selection P-O correlation in 
fitness is most of the time one-half. However, COVop will 
be almost zero if the cycles are long - which is the most 
favourable case for high P-O correlation. 

Overall, we can conclude that the absence of a parent- 
offspring correlation does not imply the absence of natu- 
ral selection, as noted originally by Wright (1935). Indeed, 
so diverse are the possible outcomes of different types of 
single gene selection that it would be unwise to make any 
predictions. What one can say is that for plausible values 
of h, s, t, and # (e.g., h=0.5,  s = t = 0 . 0 1 ,  # = 1 0 - 5 ) ,  the 
parent-offspring correlations will be high for some cases 
in the absence of environmental contributions to vari- 
ability in fitness. However, the contribution to the vari- 
ance in fitness of a single gene is low (of the order of the 
mutation rate) and, hence, any single gene's contribution, 
in the presence of substantial environmental variability 
(e.g., a coefficient of variation of 10% for fitness with a 
mean close to unity), will be very small. Because there are 
many genes with variability maintained by mutation- 
selection balance, overall the heritability cannot be negli- 
gible. 
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Table I. Parent-offspring correlations in fitness at equilibrium. (Where no reference is provided, the results have been derived using 
the formula on page 4) 

S e l e c t i o n  F i t n e s s  M u t a t i o n  C O V o p  bop 

(A  2 ~ A1) 

A1A1 A1A2 A2A2 

D o m i n a n t  t - s 1 - s 1 # # s 

I n t e r m e d i a t e  1 - s 1 - h s t # # h s 

F r e q u e n c y  d e p e n d e n t  1 - p s 1 1 # I~/s 

R e c e s s i v e  1 - s 1 1 # # s 

O v e r d o m i n a n t  1 - s 1 1 - t # g z  s / t  

2 ~ zs s 
(�89 s); Haldane 1949) 

2 I # 

(s + 0 2 #2 
S 2 t 4 

( H a l d a n e  1949 ;  P e n r o s e  1964)  

The cases considered here are very simple, but many 
other fitness schemes that exhibit the important point 
mentioned earlier, i.e., lack of independence of parent and 
offspring fitnesses, could be considered. Tables 2 and 3 
illustrate a fitness scheme possible only with long genera- 
tion intervals and a long period of parental care as with 
humans and various other animals. In this system, pro- 
posed by Yokoyama (1987) as a model for the interaction 
of an individual's own phenotype with that of its parents, 
the fitness of an individual manifesting a trait is 1 - 6 and 
this is reduced multiplicatively by a factor (1 - ~) for each 
affected parent. For  generality, all three genotypes can 
manifest the trait with probabilities f l ,  f2, f3. We have 
not worked out the entire consequences of this scheme 
because it is so artificial, but present it as an example of 
a case where parental phenotypes and genotypes and the 
mating types determine offspring fitnesses, noting that in 
this case, we cannot conclude that the offspring of all 
genotypes will have equal mean fitness, so that parent- 
offspring correlation will not be zero. We present the 
model in detail to illustrate the complexity of even the 
simplest, crudest model that is aimed at incorporating 
behavioural feedback. 

Fraternal correlations in fitness 

Using the method of Haldane (1949), we can readily 
derive comparable correlation coefficients for sibs. Some 
of these are set out in Table 4. It can be easily shown, in 
addition, that in each case only a part of the genetical 
variance is dominance variance; part is additive. (For 

example, in the dominant case, V A =p3 q S 2, VD =p2 q2 S 2 

in the population at large.) 
The important point to note here is that at any time 

there is the potential for substantial additive-genetic vari- 
ance in fitness within a generation from the joint effects 
of all of the different types of gene action, so that if the 
environment changes, whether in the cyclical manner 
proposed by Eshel and Hamilton (1984), or in a 
monotonic fashion, or in a discontinuous fashion, or in- 
deed arbitrarily adaptive, evolution can occur, utilizing 
the variation maintained by either overdominance or 
mutation selection balance. 

Discussion 

If equilibrial additive-genetic variance is not zero, at any 
time, there will be substantial potential for natural selec- 
tion, regardless of whether the population is in equilibri- 
um or not. The only equilibrium that does not offer the 
potential for genetic change given environmental change 
is the trivial and unlikely state of complete homozygosity 
for all relevant genes. 

There are many other possible influences on the addi- 
tive-genetic variance in fitness and the consequent herita- 
bility. For  example, Wade and McCauley (1980) have 
defined a "populational heritability", i.e., the proportion 
of the total variance in a trait attributable to genetic 
variation among different demes or subpopulations rela- 
tive to the phenotypic variation among the means of such 
subpopulations. Tachida and Cockerham (1987) have 
considered the implications of such an approach for 
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Table 2. Fitness scheme of Yokoyama (1987). See text for details 

No. 
parents 
affected 

Frequency A~ A~ A~ A 2 AzA2 

A t A 1 xA t A t 0 p2 ( i--fD 2 

1 p2 2f(1 - fx )  

2 p2 f2 

A t A 1 x A t A 2  0 2 P Q ( 1 - f O ( 1 - f 2  ) 

l 2PQ. ((1 -./'i)f2 +f~ (1 -f2)) 

2 2 n Q f t f  2 

A1AlxAzA2 0 2PR(1--ft)(1--f3) 

1 2PR ((1 - fO f3 +ft (1 --f3)) 

2 2PRf~f  3 

At Az • At A2 0 Q2 (1-f2)2 

1 Q2 2 f  2 (1 - f2)  

2 Q2f22 

AtA2xA2A2 0 2QR(1-f2)(t- f3 ) 

1 2QR ((1 - f2)  f3 +f2 (1 -f3)  

2 2QRf2f3 

A 2A 2• 2A 2 0 R 2(1-f3) 2 

1 R 2 2 f2 (1 - f 3 )  

2 R 2 f~ 

L (1 - 6) 
1 - f t  

f(1--6) (1--8) 
(1 - L )  (1 -~) 
L (1-6)(1 _~)2 
(1 - f D  (1 _e)2 
�89 (t -6 )  (t--~)2 
�89 (1 --L)(1 --~): 
�89 (t - 6 ) ( t  _~)2 
�89 (1 --fl) (1 _e)2 
�89 (1-6)(1-~)2 
�89 (t - L )  (t _~)2 

�88 (1-6)(1 _~)2 
�88 (t - L ) ( 1 - 8 ) ~  
�88 (1-6)(1-~)2 
�88 (t - L ) ( 1 - 8 )  2 
�88 (1-6) (1-8)  2 
�88 (t - L )  (t _~)2 

�89 L ( t-6)  
�89 (t - f 9  

f2 (t -6) 
1-f2 

f~ ( t  - 6) 
1-~  
L (1-6) 
1-f2 
�89 L ( t -6)  
�89 (1 - f 9  

�89 L (I-6) 
�89 (t -f2) 
�89 f2 (1-6) 
�89 (t - L )  
�89  
�89 (1 -f2) 

�88 ( t - 6 )  
�88 (t - f 9  
�88 (1-6) 
�88 (a -f3)  
�88 (1-6) 
�88 (1 - f 9  
�89 (1-6) 
�89 (1 - L )  
�89 (1-6) 
�89 (1 --f3) 
�89 (1 -6 )  
�89 
�89 (t -6 )  
�89 -f~)  
�89 (1-6) 
�89 (t - f 9  
l f~  (1-6) 
1 (1 - L )  

change in genetic variance over time and have conclud- 
ed that, in most cases, the so-called populat ional  herita- 
bility will increase over time to a maximum and decline 
thereafter, under panmixia with migration between 
demes and random extinction of demes. Examinat ion of 
their results suggests that it will not be possible in any 
particular case to determine whether or not there should 
be substantial additive-genetic variance for a fitness-re- 
lated trait at any particular time. 

As a second example of a process that may be expect- 
ed to allow the persistence of non-zero heritability for a 
trait closely associated with fitness, consider two traits 
whose functions are closely interdependent, but whose 
genetic determination is largely independent. In such a 
case, directional selection on one trait may be ineffective 
if the second trait is subject to stabilizing selection and 
has substantial additive-genetic variation (Biirger /986). 

]Equations (/1.4) and (19.6) of Falconer (198/) are not 
appropriate  for this example because Bfirger considered 
two traits under selection, one under directional, the oth- 
er under stabilizing selection, whereas Falconer consid- 
ered that only one trait is under selection, and obtained 
the correlated response of the second trait.] 

In this discussion, we have not referred to actual esti- 
mates of heritability for fitness-related or other traits. 
However, we should note that estimates can vary ex- 
tremely widely. For  example, Woldehawariat  et al. (1977) 
reported the results shown in Table 5 for birth weight (a 
trait known to display evidence of stabilizing selection) 
and final feedlot weight (a trait further removed from 
natural  selection) in beef cattle. Neither trait is usually 
regarded as a "fitness trait", and each has quite high 
heritability, compared with, e.g., litter size in sheep (range 
0.01-0.29; Purvis et al./987). Further,  heritability can be 
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Table 3. Means and variances in fitness for the genotypic scheme of Table 2 

Mean Variance 

A I A l x A 1 A  1 0 1--f15 
1 (1 - f ,  ,3)(1 - e )  
2 (1 - f~  ,3)(1 _~)2 

A 1 A~ x A 1 A 2 0 1 (2--6 (fl +f2)) 
1 �89 ( 2 - 6  (f,  +f2))(1 - e )  
2 �89 ( 2 - 5  (fl +f2))(1 __g)2 

AIAl  XA2A 2 0 1--f23 
1 (1 - f 2  6) (i -~)  
2 (1 - f 2  5)(1 - e )  2 

A 1 A z x A z A  2 0 1- - �88  +2 f2+ fa ) 
1 (1 -- �88 6 (fl + 2 f2 +f3)) (1 -- ~) 
2 (1 - �88 a ( k  + 2 f2 +fa)) (1 - e) z 

A 1 A 2 x A 2 A 2 0 �89 (2--6 (f2 +f3)) 
1 �89 ( 2 - 6  (f2 +f3)) (1 -~)  
2 �89 ( 2 - 6  (f2 +fa))(1 _~:)2 

A2A2• 2 0 l - f 3  5 
1 (1 - f 3  '3) (1 -~)  
2 (1 - f 3  6)(1 _~:)2 

(1 - k )  k 6: 
(1 - e ) : k  6 ~ (1 - A )  
(1 -~)" k '3:(1 - L )  

�89 (1 - �89 ( k  +A)) ( k  +L)  6 2 
�89 (1 -- �89 ( k  +f:))  ( k  +f2) ,3:(1 --e) 2 
�89 (1 - �89 (f~ + f2 ) ) (A  +f2) ,32 (1 -e)"  

(1 - - f9  f~ ,32 
(1 - f 9  f2 ,32 (1 _~)2 
(1 - f g  f2 62 (1 -~)~ 

� 88  - �88 (fl + 2 f2 +f3)) 52 
�88 (L + 2 L + k )  (1 - �88 (L + 2 f2 +f3)) ,52 (1 - e)2 
�88 (fl + 2 f2 +A) (1 - �88 (L + 2 f~ +A)) ,5~ (1 - ~)~ 

1 (1 - �89 (f2 +A))  (f2 + A )  a 2 
�89 (1 - �89 (f2 +f3)) (f2 +f3)  52 (1 - ~)2 
�89 (1 - �89 (f2 +A))  (f2 + A )  62 (1 -~)" 
(1 - f3 )  A '32 
(1 - A ) L  ,3~ (1 _~)2 
(1 - A )  L 62 (i -~)" 

Table 4. Sib-sib correlations in fitness at equilibrium. (Where no reference is provided, the results have been derived by methods set 
out in Leach and Mayo 1967) 

Selection Fitness Mutation Correlation 
(A 2 -'+ A1) 

A1A1 A1A2 A2A2 

Dominant 1 - s 1 - s l # 

Intermediate 1 - s 1 - h s 1 /~ 

Frequency dependent 1 - p s 1 1 

Recessive 1 - s 1 1 # 

Overdominant 1 - s 1 1 - t 0 

Two identical 1 - s 1 1 - t 0 
overdominant genes 

(1 +s) (Leach and Mayo 1967) 

l ( l + h s )  (Hatdane 1949) 

1 

7 + 7 ~ - s  t / (Penrose 1964) 

\(s t)2/(s + O/ 

(Mayo et al. 1982) 

high because env i ronmen ta l  variabi l i ty  is low (e.g., 0.9 for 
h u m a n  serum acid phosphatase ;  Bishop et al. 1987) as 
much  as because there is high overall  var iance  with a 
subs tant ia l  genetic c o m p o n e n t  (final feedlot weight in 
Table 5). 

Fo r  a general  discussion of es t imat ion  problems,  see 
Cheverud  (1988), and  for a discussion of var iance in fertil- 
ity, see M a y o  et al. (1978). In  this lat ter  study, it was 
shown by s imula t ion  that  long-tai led family (litter) size 

d is t r ibut ions  could be completely de te rmined  genetically, 
yet daugh te r -dam regression would  imply VA = 0, at the 
same t ime as direct ional  selection was exhaust ing V a and  
leading to an  increase in m e a n  litter size. In  fact, negative 
daugh te r -dam regression for litter size is possible, largely 
th rough  mate rna l  effects, as shown by Fa lconer  (1965) in 
mice and  Rutledge (1980) in pigs. 

Mousseau  and  Roff (1987), as a l ready ment ioned ,  
have shown that  in some cases heritabili t ies of fitness trait  
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Trait No. Estimation technique 
estimates 
summarized 

Lowest Highest Mean 
estimate estimate 

Birth weight 7 
68 

Final feedtot weight 8 
28 

Regression of offspring on parent 
Paternal half-sib correlation 
Regression of offspring on parent 
Paternal half-sib correlation 

0.21 0.57 0.42 
-0.29 1.47 0.45 

0.25 0.84 0.44 
-0.44 1.00 0.47 

are high in natural  populat ions,  and have furthermore 
done so in a way that  largely rules out est imation diffi- 
culties. The models presented here provide an explana- 
t ion for such observations,  

Overall  we can say, first, that  many independent,  con- 
cordant  estimates of a heritabili ty may be necessary be- 
fore we can conclude that  heri tabil i ty is indeed low or 
high (as for many traits in economically impor tant  ani- 
mals) and, secondly, that  the estimates of heritabili ty ob- 
tained for many traits (0-0.25) are compat ible  with the 
maintenance of variabil i ty by mutat ion-select ion bal- 
ance, i.e., most  such traits, whether called "fitness traits" 
or not, are unlikely to be neutral  in any meaningful 
sense. It should be noted that  Biirger et al. (1989) and 
Keightley and Hill (1987) report  high between-generat ion 
variances both  under a balance between muta t ion  and 
stabilizing selection and under directional  selection; that  
is, different fitness pat terns can yield substantial  variabil-  
ity, making inferences from non-zero variance to fitness 
pat terns hazardous,  In this context, it is worth recalling 
the comment  of Fisher  (1948) on heritabil i ty:  "Like so 
many statistical ratios, it has a numera tor  and a denom- 
inator,  and its value depends on both elements; whereas, 
however, the numera tor  has a simple genetical meaning, 
and, if proper ly  determined, should be an accurate esti- 
mate of the genetic variance, or the amount  of variance of 
the relevant measurement  directly available for utiliza- 
tion by selection, the denominator  is the total  variance 
exhibited by the variate as measured, and therefore in- 
cludes the whole of the variance due to errors of measure- 
ment, in the strict sense, and, what  in a wider sense also 
are errors of measurement,  namely those due to uncon- 
trolled, but potent ial ly control lable environmental  varia- 
tion. It also, of course, contains the genetic variance, and 
some genotypic variance not immediately available for 
selective improvement ,  though liable to become so in 
future generations. Obviously,  the information contained 
in the numera tor  is largely jet t isoned when its actual 
value is forgotten, and it is only repor ted as a ratio to this 
hotch-potch of a denominator" .  Clearly, one should work 
with covariances and variances, but  we have reviewed 
heritabili ty in detail  because most  discussion has related 
to heritability. 

Acknowledgements. We thank Dr. S. Newman and a reviewer for 
helpful comments. 
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